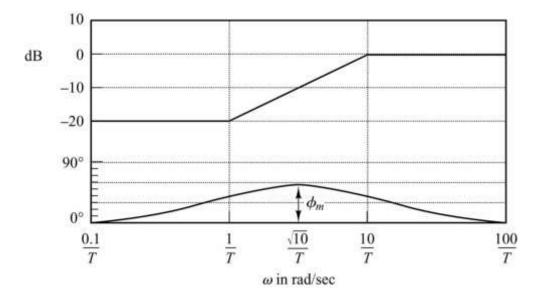
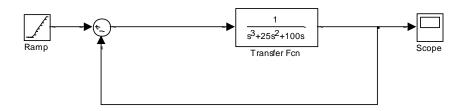

Control System Design: Lead Compensator

Control system diagram in unity feedback


 $G_{C}(s)$ – Compensator / Controller; G(s) – Plant / Transfer function

Lead compensation techniques based on the frequency response approach


Lead compensator transfer function

$$G_c(s) = K_c \alpha \frac{Ts+1}{\alpha Ts+1} = K_c \frac{s+1/T}{s+1/\alpha T}; \qquad 0 < \alpha < 1$$

Compensate magnitude and phase profile shown in figure

Example Lead design; Desired system is K_v of 20 sec⁻¹, 15% overshoot related to PM of 53 degree (damping ratio of 0.516)

Control system design by SCE lab, School of Mechanical Engineering, Suranaree University of Technology

Determine and analysis of previous information

Open-loop TF is

; Type_____

Closed-loop TF is

Closed-loop poles are _____

Bandwidth frequency $(\omega_{BW}) =$ ____rad/sec

Gain margin(GM) = _____ dB; Phase margin(PM) = _____ degree

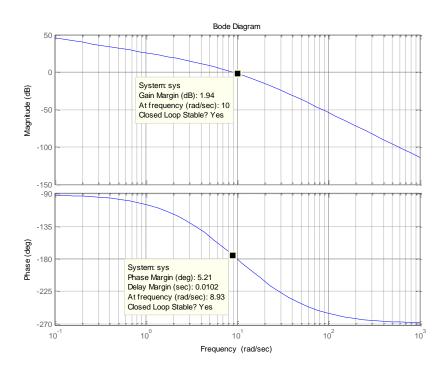
Static velocity error constant (K_v) = _____ sec⁻¹

Settling time = ____sec (5% error)

<u>Step I:</u> Determine total gain (K) of open-loop TF to satisfy the requirement on the given static velocity error constant (K_v)= 20

$$K_v = \lim_{s \to 0} sG_c(s)G(s) = \lim_{s \to 0} s\left(K_c \alpha \frac{Ts+1}{\alpha Ts+1}\right) \left(\frac{1}{(s+20)(s+5)s}\right) = 20$$

where $K_c \alpha = K$, thus


$$K = 20(100) = 2000$$

New open-loop transfer function

$$G_0(s) = \frac{2000}{(s+20)(s+5)s} = \frac{2000}{s^3 + 25s^2 + 100s}$$

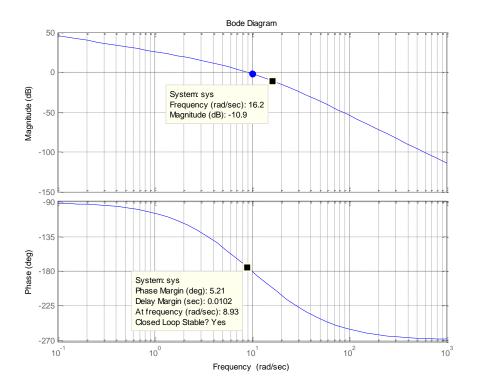
Step II: Plot bode diagram of open-loop TF with new gain such as

$$G_0(s) = \frac{2000}{(s+20)(s+5)s} = \frac{2000}{s^3 + 25s^2 + 100s}$$

Phase margin(PM)= 5.2 deg. at 8.93 rad/sec; Gain margin(GM)= 1.94 dB at 10 rad/sec

Step III: Phase margin requirement is 53 deg. plus 10 deg. Total PM is 63 deg.

Now we have PM of 5 deg. and needs to add 58 deg.


Step IV: Determine ,
$$\sin \varphi_{max} = \frac{1-\alpha}{1+\alpha}$$

$$\varphi_{max} = 58 = \sin^{-1} \frac{1-\alpha}{1+\alpha},$$

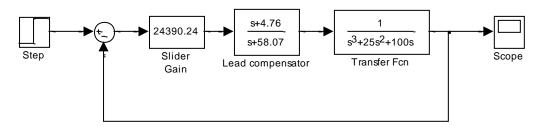
$$\alpha = 0.082$$

Step V: From
$$-20\log\frac{1}{\sqrt{\alpha}}=-20\log\frac{1}{\sqrt{0.082}}=-10.86~dB$$
 at ω_{max}

Select ω_{max} to be new phase crossover frequency at this frequency must be – 10.86 dB. At 16.2 rad/sec is ω_{max}

$$\omega_{max} = \frac{1}{T\sqrt{\alpha}} = 16.2 \ rad/sec$$

Thus T= 0.21; $\alpha = 0.082$

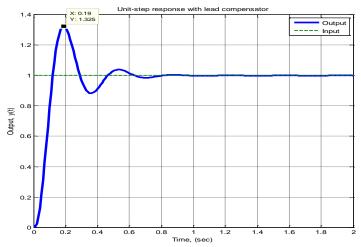

Now lead compensator is

$$G_c(s) = K_c \frac{s + 1/T}{s + 1/\alpha T} = K_c \left(\frac{s + 4.76}{s + 58.07}\right)$$

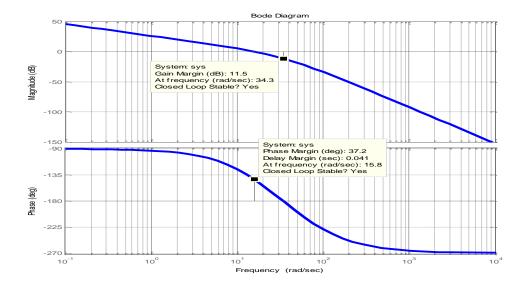
Step VI: Determine gain of lead compensator

$$K_c\alpha=K=2000\to K_c=24390.24$$

Now lead compensator is $G_c(s) = 24390.24 \left(\frac{s+4.76}{s+58.07} \right)$



Check steady state error for unit-ramp input relation with static velocity error constant and PM relation with damping ratio (% overshoot)


- Steady state error for unit-ramp input is 0.05 (Static velocity error constant is 20 sec⁻¹)

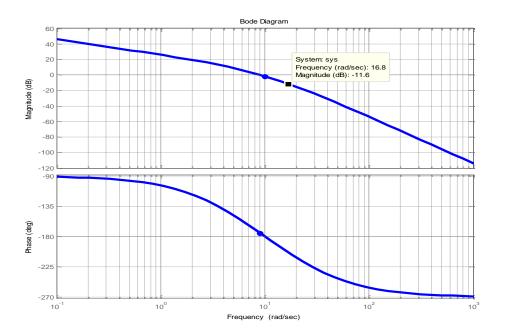
- **% overshoot is 32.5**Desired system is 15% overshoot

Bode diagram of Open-loop TF $G_c(s)G(s) = 24390.24 \left(\frac{s+4.76}{s+58.07}\right) \left(\frac{1}{(s+20)(s+5s)}\right)$

Phase margin(PM)= 37.22 deg. at 15.8 rad/sec; Gain margin(GM)= 11.5 dB at 34.3 rad/sec

Redesign:

Step III: Phase margin requirement is 53 deg. plus 12 deg. Total PM is 65 deg.


Now we have PM of 5 deg. and needs to add 60 deg.

Step IV: Determine lpha

$$\varphi_{max} = 60 = \sin^{-1} \frac{1-\alpha}{1+\alpha};$$

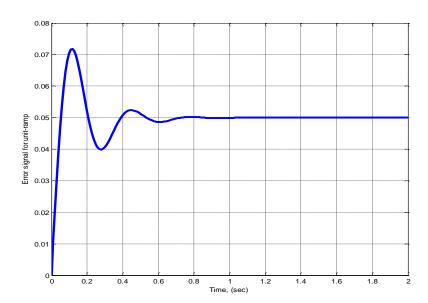
 $\alpha = 0.0718$

Step V: From
$$-20 \log \frac{1}{\sqrt{\alpha}} = -20 \log \frac{1}{\sqrt{0.0718}} = -11.438 \, dB$$
 at ω_{max}

Select ω_{max} to be new phase crossover frequency at this frequency must be – 11. 6 dB. (approximately) at 16.8 rad/sec is ω_{max}

$$\omega_{max} = \frac{1}{T\sqrt{\alpha}} = 16.8 \ rad/sec$$

Thus T= 0.222; lpha=0.0718


Now lead compensator is

$$G_c(s) = K_c \frac{s + 1/T}{s + 1/\alpha T} = K_c \left(\frac{s + 4.5}{s + 62.697}\right)$$

Step VI: Determine gain of lead compensator

$$K_c \alpha = K = 2000 \rightarrow K_c = 27855.153$$

Now lead compensator is $G_c(s)=27855.153\left(\frac{s+4.5}{s+62.697}\right)$

